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I. Introduction 

The magnetic field in an accelerator or a storage ring is usually so designed that the 

horizontal (x) and the vertical (y) motions of an ion are uncoupled. However, because of 

imperfections in construction and alignment, some small coupling is unavoidable. In this 

lecture, we discuss in a general way what is known about the behaviors of coupled 

motions in two degrees-of-freedom. 

Since the single particle dynamics in a magnetic ring is Hamiltonian, some general 

behaviors are exhibited. The motion is Hamiltonian at all times. It is, therefore, 

equivalent to the unfolding of a continuous canonical transformation since by definition a 

canonical transformation preserves the Hamiltonian formalism. There are a number of 

expressions of local dynamical variables which are invariant under canonical 

transformations and, are therefore, local invariants of motion. The most useful is the 

Poisson bracket of any two dynamical variables F and G defined by 

Eap 

[F,G] = 1 
aqi aPi 

gGm 
= -[G,F] 

i 
(1) 

hi aPi 

Where qi, pi are the coordinate and conjugate momentum variables of the motion. Two 

interesting properties of the Poisson bracket are 

and 

P = [F,H] (3) 

where H is the Hamiltonian and dot means d/dt. The canonical equation of motion can 

thus be written as 



I ;li = [9i’Hl 

pi = [Pi”1 
(4) 

The Poisson bracket also provides the transition to quantum mechanics where it is 

replaced by the commutator, i.e. 

[F,G] + +FG-GF) (5) 

Also interesting are the Poincar& integral invariants. For an n degree-of-freedom 

motion, the n integrals 

’ ~ 
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are a.11 invariants of motion. The integration domain S2m (m<n) is an arbitrary 2m- 

dimensional manifold in the 2n-dimensional phase space. In our case of n=2 we have 

only two invariants. The first one 

+ dydpy) = proj . of S2 on (x, p,) plane 

+ proj. of S2 on (y, py) plane = invariant (7) 

is not very useful, because we are normally interested in the projections of a 4- 

dimensional phase space volume (projected x and y emittances) and not those of S2. We 

shall see below that under certain special cases, one can indeed make some statements 

about the projected x and y emittances for a coupled motion. But the relations are by 

no means simple. The second 

J 

S4 

dxdpxdydpy = 4-dimentional emittance = invariant 

is the Liouville theorem and is, of course, most useful. 

(8) 



III. Couoled Linear Motion 

A. Parametrization 

A general quadratic Hamiltonian can always be transformed to the following form 

1 
E = ; (p; + p;) + L(ypx- xpy) + ; Kxx2 + Qxy + 2 Kyy2 

‘Kx 0 Q -L ’ x ’ 

= ; (x P, Y Py) 
OlLO p .3-l. , Q L KY 0 yx 

E ; “zaz 

-L 0 0 1 
PY 

(9) 

where the L (angular momentum) and the Q (45’ roll) coupling terms are due 

respectively to solenoids and skew quadrupoles. The twiddle means transposition and the 

cross in a 4x4 matrix divides it into four 2x2 matrices. The corresponding canonical 

equations of motion can be written as 

2 = SEZ (10) 

with 

=[Jj-+] = symplectic unit matix 

The symplectic conjugate of a matrix M is defined as 

!d+ E SE (11) 

A matrix is symplectic if MM +- - I or equivalently if MSM = S. The number of 

independent elements in a 2nx2n symplectic matrix is s = a(2n+l). 

For n=l (one degree-of-freedom), s=3 and a 2x2 symplectic transfer matrix is 

parametrized by Courant and Snyder as 

Id = Ices/r + .Jsinp with .I = [-; -t ) (12) 

For n=2, s=lO and a 4x4 symplectic transfer matrix can be parametrized as1 



T = [-+-# = “[xl”+ (13) 

where 

and the 2x2 matrices A, B and D are all symplectic. Including $ this gives a total of 10 

parameters for T. For the off-diagonal coupling terms, # measures the strength an<. D 

gives the structure of the coupling. Some of the important relations are 

with A z det(m+n ) = real I near /Ax=p 
Y 

A 
tan 24 = Tr(M-N)/2 

A = M - Dn tan4 

B = N + D+m tan# 

From these we get the Pythagoras relation 

$T=A - ~T=B 
2 

1 [ 
2 

= ;TrM - ~T=N 1 + ~~ 

(14) 

05) 

(16) 

(17) 

(18) 

(--P1 - Cf3SP2) ’ = (cosjbx - COS~~)~ + A2 (19) 

Thus the separation between the normal-mode phases ~~ and ~2 are always greater than 

that between the nominal horizontal and vertical phases p, and py. The stronger is the 

coupling (the larger is #) the greater is the separation between the normal-mode phases. 

B. Invariants, Distributions and Emittances 

From Eq. (13) one can immediately write two invariants WI and W2 corresponding 

to the matrices A and B, each being a bilinear expression in all 4 phase-space variables 

x, px, y, py. When the motion is uncoupled (+O), the invariants are separated in the 

two degrees-of-freedom, such that 



w1 = w, = 7,x2 +’ 2axxp, + pxp; ) w2 = w 
Y (20) 

For one degree-of-freedom, the invariant distribution ‘J’(W) is elliptical. One can 

define a beam-ellipse matrix 0 as in the computer program TRANSPORT’. As the 

motion progresses with transfer matrix M, the beam ellipse transforms like 

ll=MLlE 0 (21) 

and the emittance of the beam defined as the area of the ellipse is invariant. 

For two degrees-of-freedom, the 2-dimensional manifold defined by a pair of values 

W1 and W2 is a torus. In general, then, the invariant distribution Q(W,, W2) is rather 

complex. But if one takes only values of W1 and W2 such that W1+W2=W, one gets a 

one-parameter distribution which depends only on the sum of the “actions” in the two 

normal modes and which is, then, ellipsoidal. Although it is not clear how such an 

ellipsoidal beam may be formed, its behavior has many interesting features3. The beam- 

ellipsoid matrix is written in the TRANSPORT code as 

0= ax t 
H-1 z cry. 6-W 

and transforms with the transfer matrix T as 

D = T CT,? (23) 

The x and y emittances eX and c are defined as the areas of the projected ellipses. The 

following two relations for the pro&ted emittan& can be readily derived. In both cases, 

one starts with uncoupled emittances having upright ellipses in both planes (beam- 

ellipsoid matrix diagonal and denoted by subscript o). 

Relation 1 

E2 x - Ef = (EXZ - E yz) (1 - 26) I 6 t det(n) (24) 

where 6 is the determinant of the lower-left coupling 2x2 matrix n of the transfer matrix 

T as given in Eq. (13). The obvious consequences of this relation are 



(1) fX = ey whenever 6 = l/2. 

and 

(2) if EXO = E y. then cX = ey always. 

Relation 2 

i 

EX > EXO 11-61 + E yo lL5’ 

Ey 2 EXO 161 + E y. 11-61 

The consequences of these inequalities are: 

(1) If fyo = 0 and cxo $ 0, then 

and we have: 

E* = E x0 11-61 

<Y = = x0 16’ 

For 0 < 6 < 1, eX+ eY = E x0’ both eX and eY are bounded. 

For 6 > 1 or 6 < 0, Iex- cyl = eXo; eX and eY may be unbounded. 

The situation is clearly symmetric if cXO = 0 and eye =k 0. 

(2) If cXO= eye= co, we have: 

For 0 2 6 < 1, eX= eyl E L Ed. The growth of the projected 

emittance from co to c is not too large. 

For 6 > 1 or 6 < 0, E L ~~126-11. Depending on the value of 6 

the growth can be very large. 

C. Decoupling Using Solenoids and Skew Quadrupoles4. 

The transfer matrix of a thin element has the form 

T= 

wher; for skew quadrupoles 

0 0 
F=k I 1 1 o with k = Be 

BP 

and for solenoids 

with 0 = 1 Bz’ 
2Bp’ @3) 

(25) 

Gw 

(27) 



The quantities defining k and 0 have their conventional meanings. 

(1) For local compensation, we assume a number of thin coupling elements grouped 

closely together in a short section of the circumference of an otherwise linear and 

uncoupled ring. The condition that they produce zero coupling everywhere outside the 

short se: ,;ion is, to first order terms in the strengths of these elements 

I: M;‘F My = 0 

where 

(29) 

M 
%Y 

= uncoupled x or y transfer matrices from some fixed 

outside location to the element F 

and the summation is over all the coupling elements. Without writing them out 

explicitly, we see that this yields 4 conditions. Hence it takes, for example, 4 skew 

quadrupoles to compensate for the coupling produced, say, by the momentum analyzing 

solenoid in a colliding beams detector. 

(2) To decouple the motions over a full revolution of the ring, all we need is to 

make A as defined in Eq. (14), vanish. For thin elements and to the first order, one can 

show that 

A2 = - Tr 1 [Mx(ji)FiMy(ij)Fi - Hx(ji)FiBy(ij)Ff] (30) 
ij 

Where Fi and Fj are as defined in Eqs. (27) and (28). Mx(ji), e.g., is the uncoupled 2x2 

transfer matrix in the x degree-of-freedom from location i to location j, and i%Jji) is the 

same matrix but with 2”~~ added to the phases. To further clarify the notation of Eq. 

(30) we have for a single skew quadrupole 

A2 = k2pxpy sin 2rvx sin 2rv 
Y (31) 

The condition A = 0 over a full revolution of the ring can clearly be satisfied with a 

single compensating skew quadrupole or in the case of a large ring, with a single string 

of skew quadrupoles all connected in series. 



8 

D. A Simplified Case 

An overly simplified case which although unrealistic, is nevertheless illuminating is 

given by the Hamiltonian Eq. (9) with L = 0 (no solenoid) and 

K I v2 u2 
x x ’ 

K E v2 w2 
Y Y ’ 

QZCW2 all constant, 

where w = revolution angular frequency. The coupled equations of motion are now 

I 

x”+++cy=o 

y” + Y2 yy+Cx=O 
(321 

The normal modes and frequencies are easily obtained by diagonalizing the matrix 

The normal coordinates are simply rotated from (x, y) by the angle G and the normal 

frequencies are 

i 
“; = v; + c tan 0 
“; = “; - 

(33) 
c tan 0 

with 4 defined by 

tan 20 = 2c 
“; - v; 

(34) 

The x and y motions with initial conditions x = 1, y = x’ = y’ = 0 at 6 = 0 are 

l 

x = cos2 0 toe vlB + sin' 0 cos ,v2e 

y = sin @ cos 0 (cos vllJ - cos v26) 
(35) 

Both normal frequencies appear on both x and y motions (hence, beam pickups). It is, 

however, possible to rotate both the pickups and the beam kickers to the normal mode 

planes (angle $1 to observe only v1 or y2. For VI G y2 the motions look like 

sinusoidally amplitude-modulated oscillations with angular frequency (VI + v2)/2. The y- 

amplitude is zero at 6’ = 0, grows to a maximum of 



‘Y’IKU = sin 20 (and 1x1 = lxlmin = cos 2@) (36) 

at e = r/(q - v2) and returns to zero at 0 = Zr/(vI - v2). Thus a fraction sin 2Q of 

the amplitude (or a fraction sin’ 20 of the energy) is coupled to swing back and forth 

between x and y. 

IV. Couuled Non-linear Motion 

Generally non-linear motions are not integrable and have to be treated either by the 

successive perturbation method or by a serial transformation procedure. The Hamiltonian 

is written as 

H=H 0 + El * (37) 

The unperturbed Hamiltonian Ho contains only the uncoupled linear motions. 

Bo = + (p; + Kxx2) + ; (p; + K,Y’) 

= $ (Pt + u2) + * (P? + “2) 
x 

=o (2rR = circumference) (38) 

where the second and the third expressions are those obtained after transformation first 

to the Floquet variables u, p,, v, p, (and 0 = s/R as independent variable) by the 

generating function 

F = -(ca; up, + 2 u2)-(T vpy + > v2) 

which gives 

(similarly for y) 

(39) 

(40) 

‘i 

X=KU 

px K = -qpu- axu) 
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and second, to the angle-action variables ax, Ix, a y, Iy by the generating function 

G = ; p; cot (f,+a,) + 5 p, l 2 cot(~y+ay) (41) 

which gives 

1 

u = J-q cos ($,+a,) 

P, = - CZQ sin ($x+ax) 

(similarly for v) (42) 

where 

fxF ds 
I p* = linear betatron phase (similarly for y). 

In terms of the angle-action variables, the unperturbed Hamiltonian is zero indicating 

that in the angle-action phase space, the unperturbed motion is just a fixed point. 

The perturbation Hamiltonian, HI, is usually written in the multipole-expanded form. 

The Zk-pole term e.g. is 

H1(2k-pole term) 

B(k-l) 
=LJ z (-1)5 $ k-m ym 

n!Bp c1 In* 

B (k-1) m-1 
+I--? 

n! Bp & C-1) m 2 Ck xk-m ym 

even m (normal) 

odd m (skew) 

cask-m $4, cc2 #y 

(43) + skew terms 

where 

4 “,, +a Ck 
X,Y X,Y X,Y , 

m are the binomial coefficients, 

and superscript (k-l) means (k-l)th derivative with respect to x. There are usually two 

interesting special simplifying approaches from this point on. 
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A. Single Resonance Dominated Motion. 

If one expands the powers of cos #, Fourier analyzes the O-dependent coefficient into 

exp[ii(nO+b)] and finally substituting the index 8 for (k-m), one gets for a single set of 

integral values of e, m and n 

4 
Hl(evx+ Pw = n 

Y 
resonant term) = Kem,(21J2 (ZI,)’ cos #I 

im= (44) 

with 

# Lm = Wx+m+y-n8) + eax+~2.y-6 

zi (eVx+mUy-n)e + Lax+may-6 

The single resonance dominated motions have been studied extensively 5, 6, 7, 8 Their 

general features of fixed points, separatrices, etc., sre familiar to most people and will 

not be further pursued here. We will only point out that for resonances in a single plane 

an important application is the resonant beam extraction and that for coupled resonances 

the Hamiltonian, Eq. (44), yields readily the invariant 

mix- eIy = invariant (45) 

which states that on a difference resonance ( Pand m have opposite signs) the motion is 

bounded. 

B. Away From Resonances 

Since resonances are everywhere dense as rational numbers, me can only mean here 

that the motion is away from strong low-order resonances. In this case, the effects of the 

low-order resonances are to distort the unperturbed linear motion. The distortions are 

given in terms of the distortion functions9 which are most conveniently defined in the 

complex form. The unperturbed motions are written as 

=x E u + ipu = q e-++x (same for y) (46) 

For a given 2n-pole perturbation term the distortions 6zx and 6zy are given as 

polynomials in zx, z:, z y, z; of the (n-l)th degree. The coefficients of the polynomial 

terms denoted by the letter D are the distortion functions. They can be derived either 

by solving the perturbed orbit equations of motion to the lowest order approximation 

using the method of Variation of Parameters or by applying the standard lowest order 

perturbation treatment on the perturbed Hamiltonian 10 . For a normal sextupole 

perturbation term for example, we have 
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6% 
$2 $2 = Dlzx - D3ex + D+z;~ - D;z; 

6z 
Y 

= 2(-IT*sxzy+ Ds:z;~+ D-z&+ D++$) 
(47) 

The quadratic dependencies of 6zx and 6zy on zx and zy are those expected to arise 

from a sextupole term. The D’s are the distortion functions having the form D=B+iB’ 

(prime means differentiation with respect to the argument) and the B’s have the 

following characteristics: 

(1) Each has an appropriate resonant denominator, e.g., 

B3a l B* a 
1 

sin 3rvx ’ sin a(2vyWx) ’ etc. (4% 

Thus, the distortion functions blow up when exactly on resonance. 

(2) The numerators are summations of the “strengths” of the sextupoles (assumed 

thin) properly scaled by the p-functions and multiplied by the appropriate linear phase 

factors at their individual locations. 

One can, in addition, express the closed orbit distortions and the betatron tune shifts in 

terms of these distortion functions. The exact expressions of the distortion functions up 

to the octupole perturbation term are given in Ref. 10. 

Figs. 1 and 2 show mappings of the motion with a random distribution of sextupoles 

obtained by particle tracking. Fig. 1 shows the typical scatter of projections of the 

phases points on the (u, p,) and the (v, p,) planes. In Fig. 2, the distortions of the 

motion as computed by Eq. (47) have been subtracted from the plot in Fig. 1. This 

results in the nearly perfect linear betatron motions as represented by the circles, 

showing that Eq. (47) gives the distortions due to the sextupoles to very good 

approximations. 

C. All Non-linearity Included. 

Either away from resonances or single resonance dominated the motion is regular and 

as seen above, is pretty well understood and predictable. But when all non-linearities and 

resonances are included, the well known stochastic regime of motion (chaos) appears 

together with such phenomena as stochastic layers, bifurcations, Arnol’d diffusion, 

overlapping of resonances, etc. Non-linear dynamics has been the subject of concentration 

of many prominent mathematicians such as PoincarE, Birkhoff, Kolmogorov, Arnol’d, 

Moser, Chirikov, Feigenbaum, etc. The relevance of these interesting non-linear 

phenomena to accelerator technology is 80 far limited to determining the domain of the 

stochastic regime and avoiding it. 

The most reliable and productive approach to the study of non-linear dynamics has 

so far been by numerical simulation. Many computer programs have been written. They 
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generally fall into two distinct categories. For particle tracking one uses the “kick codes” 

in which the non-linear effects are represented by frequent and regular non-linear kicks. 

Programs of the second category integrate the non-linear motion by successive 

approximations using the Moser transformation5 or the Lie algebra 
11 techniques. 

V. Measurements 

We give here a very brief discussion of the principles of beam sensors and the 

general features of measurements. 

A. Beam Sensors 

We list here only transverse non-destructive induction sensors. They are classified by 

the type of induction used to derive the signal: 

Electric (charge), Magnetic (current) or Electromagnetic. 

They can also be classified by the moment of the transverse beam distribution or motion 

to be measured: 

Monopole (beam current), Dipole (beam position), Quadrupole (beam ellipticity), etc. 

We shall illustrate the different induction types by a beam position (dipole) monitor. 

(I) Electric pickup monitor: The original form is the split electrode shown in Fig. 3. 

The beam coupling impedance Z/n of such a structure is rather high leading to a low 

threshold for coherent beam instability. The most commonly used structure now is shown 

in Fig. 4. The electrodes are reduced to the size of large buttons and are mounted flush 

with the vacuum chamber to reduce the coupling impedance. The typical sensitivity of 

this type of position monitor is around 100 pm. 

(2) Magnetic pickup monitor: The original form starts with a ferrite ring to pick up 

high frequency magnetic inductions (Fig. 5). The signals are the currents picked up by 

the four coils used as two diametrically opposite pairs, one each for horizontal and 

vertical positions. This type of monitor has a low sensitivity and a high coupling 

impedance and is, therefore, seldom used in a ring accelerator. But it has certain 

advantages when used on a single-pass transport beam. It is especially useful as a beam 

current monitor (monopole sensor) with all four coils connected in series. Indeed all 

position monitors can be used as beam current monitors simply by taking the sum of 

the signals from all the electrodes. 
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(3) Electromagnetic pickup monitor: This is also known as the stripline monitor. A 

long narrow electrode placed lengthwise next to the vacuum chamber forms a parallel- 

plate stripline (Fig. 6). The geometry is usually chosen to yield a 5011 impedance. The 

ends of the electrodes are led out of the vacuum pipe by feed-through insulators. If one 

end is terminated and the signal at the other end is read through a 5011 cable, we have 

a directional sensor. The highest sensitivity is obtained when the stripline is a quarter 

wavelength long and can be better than 50pm. Depending on the geometry, the beam 

coupling impedance of the stripline monitor can be made rather modest. 

Any combined horizontal-vertical position monitor can be used as an “ellipticity” 

quadrupole moment monitor by taking the difference of the sum-signal of the horizontal 

pair and that of the vertical pair. Extrapolating in this manner, one can in principle 

construct monitors for higher moments. However, the sensitivity of these monitors drop 

rather sharply for higher order moments. 

B. General features of measurements 

We make here a few simple but important observations and remarks about ,beam 

measurements. 

(1) The signals can be presented either in the time-domain or through an FFT, in 

the frequency-domain. 

(2) In a synchroton during acceleration, only adiabatically varying quantities can be 

presented in the f-domain with any reasonable accuracy. 

(3) In storage rings with schottky measurements, the measurement time can be made 

extremely long. Thus, one can obtain very high precisions for measurements in the f- 

domain. This is the reason that an accurate tune-plot is easy to obtain for a storage 

ring. 

(4) To measure a coherent motion, one needs to kick the beam. Such a 

measurement is difficult because first, one measures only the average motion of a rather 

large and diffuse beam and second, the decoherence time of the large beam is rather 

short. Thus, coherent measurements generally have rather poor accuracy in either t- or f- 

domain. Hence, accurate phase-plots are difficult to obtain. 

(5) The measurement of an electron beam is made much easier by the availability of 

the s.ynchrotron radiation which gives a faithful representation of the beam. 
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Fig. 3 Schematic top-view of a pair of split electrodes for a beam position monitor. 
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Fig. 5 Schematic end-view of a ferrite-ring magnetic pickup beam position monitor. 
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Fig. 6 Schematic side-view of a pair of stripline electrodes for a stripline beam monitor. 


